奴役是什么意思| 大耳读什么| 耳石症是什么引起的| 农历闰六月有什么讲究| 什么是边界感| 老想睡觉是什么原因| 省纪委副书记是什么级别| 尿不出来吃什么药| 君王是什么生肖| 肠鸣是什么原因| 痛风吃什么菜| 缪斯是什么意思| 女人的排卵期一般是什么时候| 咳嗽有白痰吃什么药好| 武五行属什么| 同位素是什么| 就绪是什么意思| 男性支原体感染什么症状| 为什么会长汗斑| 芭比q是什么意思| 近视什么意思| 身上长肉疙瘩是什么原因| cini是什么意思| 蒋介石为什么不杀张学良| 小孩呕吐是什么原因| 性冷淡是什么| 头痛是什么病的前兆| 什么是性高潮| 五个月宝宝吃什么辅食最好| 魔改是什么意思| 吃什么食物对肠胃好| 缄默什么意思| 黍是什么意思| 眼珠子疼是什么原因| 股骨头在什么位置| 尿道炎吃什么| 男人腰疼是什么原因| 女人脸色发黄吃什么补得最快| 牛筋草有什么功效| 幽门螺旋杆菌是什么原因造成的| 小孩积食吃什么药| 嫩绿的什么| 祭司是干什么的| 榴莲吃了对身体有什么好处| 心机女是什么意思| 巧克力有什么功效与作用| 早泄有什么办法| 什么是有机奶粉| 眼睛红肿是什么原因引起的| 6月12日是什么日子| 肾阴阳两虚吃什么| 换手率高说明什么| 马斯卡彭是什么| 河南是什么气候| 退休是什么意思| 荨麻疹吃什么药最有效| 59年属什么生肖| 你本来就很美是什么广告| 为什么智齿到晚上更疼| 鳌虾吃什么| 尿道炎吃什么药好| 独活主治什么病| 地道战在河北什么地方| 灰配什么颜色好看| 什么叫柏拉图式的爱情| 甲状腺查什么| 嗷嗷待哺是什么意思| 一月二十号是什么星座| 胃酸想吐是什么原因| 生姜和红糖熬水有什么作用| 吃什么去湿气最快最有效| 乙肝两对半145阳性是什么意思| 同房为什么会出血| kerry英文名什么意思| 四维彩超主要检查什么| 1022是什么星座| 吃喝拉撒是什么意思| 小米不能和什么一起吃| bpd是胎儿的什么| 骨肉相连是什么肉| 本是同根生相煎何太急是什么意思| 臭虫最怕什么| 淋病吃什么药| 金匮是什么意思| 为什么痛经| 玉仁玫白膏有什么功效| 幼儿园学什么| 口干口苦吃什么药最好| 转诊是什么意思| 送奶奶什么礼物好| 感冒引起的喉咙痛吃什么药| 汽化是什么意思| 淋巴结核是什么病| 胶原蛋白是什么意思| 什么尾巴长不了| 尿蛋白高是什么原因引起的| 为什么生我| 皮脂腺囊肿是什么原因引起的| 舌头伸不出来是什么原因| 60是什么意思| 是什么品牌| mrsa医学上是什么意思| 梦见谈恋爱很甜蜜是什么意思| 红色连衣裙配什么鞋子好看| 送爸爸什么礼物最实用| 什么可以解酒| 月经期间可以喝什么汤比较好| 梦见牙齿掉了什么意思| 刘胡兰是什么样的人| 空洞是什么意思| 不明觉厉是什么意思| 藏红花有什么作用和功效| 氯化钠是什么盐| 胃息肉是什么原因引起的| 采耳是什么意思| 10pcs是什么意思| 心力衰竭是什么症状| 肉桂是什么| 血压200意味着什么| 湾湾是什么意思| 阴茎长水泡是什么原因| 脾虚喝什么泡水比较好| 努尔哈赤是什么民族| 五行属火适合什么行业| 贫血喝什么茶| 真实的印度是什么样的| 朋友圈提到了我是什么意思| 五月一日是什么节日| ph值是什么| 什么病不能吃丝瓜| 失语是什么意思| 身上没力气没劲是什么原因| 病毒五项检查的是什么| 熟的反义词是什么| 口是什么意思| 什么是凯格尔运动| 跨境电子商务是什么| 人为什么会死| 百褶裙搭配什么上衣| 胃不好看什么科| 撮箕是什么意思| g点是什么| 传票是什么意思| 梦见孩子被蛇咬是什么意思| 舍是什么结构| 水瓶女喜欢什么样的男生| 春捂秋冻指的是什么意思| 小棉袄是什么意思| 木耳和什么不能一起吃| 什么王| 坨坨什么意思| 云南简称是什么| 什么水果不能放冰箱| 鼻子流黄水是什么原因| 3月10号什么星座| 南京有什么好玩的地方| 吃什么补肾益精| 着床出血什么时候出现| 婴儿什么时候长牙| 扁桃体发炎吃什么好得快| 1987年属什么的| 空姐在飞机上干什么| 秋葵有什么作用| 肩周炎属于什么科室| 眉毛附近长痘痘是什么原因| ng是什么单位| 县长属于什么级别| 什么蜂蜜最好| 水碱是什么| 反射是什么意思| 什么树| 胃病烧心吃什么药好| 解酒喝什么最好| 苍白的什么| 小钢炮是什么意思| 羿字五行属什么| 湛江有什么好玩的| 晚上吃什么减肥快| 阳虚是什么症状| omega是什么牌子的手表| 拿什么让你幸福| 5月28是什么星座| 手麻木吃什么药好| 85年属什么| 武则天原名叫什么| 本科和专科是什么意思| 眩晕症是什么| 长期熬夜有什么危害| 男人吃什么补肾壮阳效果最好| 小孩咳嗽流鼻涕吃什么药效果好| 菠萝蜜吃了有什么好处| 金字旁加巨念什么| 你为什么不快乐| 血常规挂什么科| 舌头溃疡吃什么药最好| 失眠吃什么中成药效果最好| 口苦口臭挂什么科| 治疗股癣用什么药膏| 吸入甲醛会有什么症状| 发晕是什么原因引起的| cap是什么| 不想吃油腻的东西是什么原因| 始祖鸟是什么鸟| 来月经前有什么症状| 焘是什么意思| 反应迟钝是什么原因造成的| 8月23是什么星座| 6.14是什么星座| 才高八斗是什么意思| 晨尿有泡沫是什么原因| 张若昀原名叫什么| 美女的胸长什么样| 卅什么意思| 肩膀疼什么原因| 摩羯男和什么星座最配| 卖酒需要办理什么证| 沏茶是什么意思| 过期药品是什么垃圾| 准生证是什么样子图片| 支气管哮喘吃什么药| 6岁属什么生肖| 上技校学什么专业好| 1997年是什么生肖| 阴道感染用什么药| 2006年什么年| sanag是什么牌子| 骨穿刺主要检查什么病| 红润润的什么| 什么是体外射精| 佛光普照是什么生肖| 胃溃疡吃什么药好| 作揖是什么意思| 梦见跟别人打架是什么意思| 常流鼻血是什么原因| 遨游是什么意思| 什么的爱| 微波炉不能用什么容器| 本来无一物何处惹尘埃什么意思| 打什么| 乌龟能吃什么水果| 诺帝卡是什么档次| 糖尿病有什么症状| 晚上7点到9点是什么时辰| 红色和蓝色混合是什么颜色| 读书与吃药是什么生肖| 胃幽门螺旋杆菌吃什么药效果好| 乙肝五项一五阳性什么意思| 专科是什么意思| 龟头是什么| 晚上七点半是什么时辰| 牛大力和什么泡酒壮阳| 间断性是什么意思| 怀孕早期吃什么| 眼睛发黄是什么原因| 毛囊炎是什么症状图片| 12月14号是什么星座| 五花肉炖什么好吃| 重听是什么意思| 才高八斗是什么生肖| 胃反酸是什么原因造成的| 吃杏仁有什么好处| 吃什么能缓解孕吐| 7.6什么星座| 私生粉是什么意思| 百度Jump to content

辉煌50年·大美新西藏

From Wikipedia, the free encyclopedia
百度 实际上,在全国科学技术名词审定委员会的英文名称(ChinaNationalCommitteeforTermsinSciencesandTechnologies)中,Terms一词的中文通译即为‘术语’而非‘名词(Noun)’。

Exploration geophysics is an applied branch of geophysics and economic geology, which uses physical methods at the surface of the Earth, such as seismic, gravitational, magnetic, electrical and electromagnetic, to measure the physical properties of the subsurface, along with the anomalies in those properties. It is most often used to detect or infer the presence and position of economically useful geological deposits, such as ore minerals; fossil fuels and other hydrocarbons; geothermal reservoirs; and groundwater reservoirs. It can also be used to detect the presence of unexploded ordnance.

Exploration geophysics can be used to directly detect the target style of mineralization by measuring its physical properties directly. For example, one may measure the density contrasts between the dense iron ore and the lighter silicate host rock, or one may measure the electrical conductivity contrast between conductive sulfide minerals and the resistive silicate host rock.

Geophysical methods

[edit]

The main techniques used are:

  1. Seismic tomography to locate earthquakes and assist in Seismology.
  2. Reflection seismology and seismic refraction to map the surface structure of a region.
  3. Geodesy and gravity techniques, including gravity gradiometry.
  4. Magnetic techniques, including aeromagnetic surveys to map magnetic anomalies.
  5. Electrical techniques, including electrical resistivity tomography and induced polarization.
  6. Electromagnetic methods, such as magnetotellurics, ground penetrating radar, transient/time-domain electromagnetics, and SNMR.
  7. Borehole geophysics, also called well logging.
Helicopter-borne time domain electromagnetic measurement
  1. Remote sensing techniques, including hyperspectral imaging and airborne geophysics.

Many other techniques, or methods of integration of the above techniques, have been developed and are currently used. However these are not as common due to cost-effectiveness, wide applicability, and/or uncertainty in the results produced.

Uses

[edit]

Exploration geophysics is also used to map the subsurface structure of a region, to elucidate the underlying structures, to recognize spatial distribution of rock units, and to detect structures such as faults, folds and intrusive rocks. This is an indirect method for assessing the likelihood of ore deposits or hydrocarbon accumulations.

Methods devised for finding mineral or hydrocarbon deposits can also be used in other areas such as monitoring environmental impact, imaging subsurface archaeological sites, ground water investigations, subsurface salinity mapping, civil engineering site investigations, and interplanetary imaging.

Mineral exploration

[edit]

Magnetometric surveys can be useful in defining magnetic anomalies which represent ore (direct detection), or in some cases gangue minerals associated with ore deposits (indirect or inferential detection).

The most direct method of detection of ore via magnetism involves detecting iron ore mineralization via mapping magnetic anomalies associated with banded iron formations which usually contain magnetite in some proportion. Skarn mineralization, which often contains magnetite, can also be detected though the ore minerals themselves would be non-magnetic. Similarly, magnetite, hematite, and often pyrrhotite are common minerals associated with hydrothermal alteration, which can be detected to provide an inference that some mineralizing hydrothermal event has affected the rocks.

Gravity surveying can be used to detect dense bodies of rocks within host formations of less dense wall rocks. This can be used to directly detect Mississippi Valley Type ore deposits, IOCG ore deposits, iron ore deposits, skarn deposits, and salt diapirs which can form oil and gas traps.

Electromagnetic (EM) surveys can be used to help detect a wide variety of mineral deposits, especially base metal sulphides via detection of conductivity anomalies which can be generated around sulphide bodies in the subsurface. EM surveys are also used in diamond exploration (where the kimberlite pipes tend to have lower resistance than enclosing rocks), graphite exploration, palaeochannel-hosted uranium deposits (which are associated with shallow aquifers, which often respond to EM surveys in a conductive overburden). These are indirect inferential methods of detecting mineralization, as the commodity being sought is not directly conductive, or not sufficiently conductive to be measurable. EM surveys are also used in unexploded ordnance, archaeological, and geotechnical investigations.

Regional EM surveys are conducted via airborne methods, using either fixed-wing aircraft or helicopter-borne EM rigs. Surface EM methods are based mostly on Transient EM methods using surface loops with a surface receiver, or a downhole tool lowered into a borehole which transects a body of mineralization. These methods can map out sulphide bodies within the earth in three dimensions, and provide information to geologists to direct further exploratory drilling on known mineralization. Surface loop surveys are rarely used for regional exploration, however in some cases such surveys can be used with success (e.g.; SQUID surveys for nickel ore bodies).

Electric-resistance methods such as induced polarization methods can be useful for directly detecting sulfide bodies, coal, and resistive rocks such as salt and carbonates.

Seismic methods can also be used for mineral exploration, since they can provide high-resolution images of geologic structures hosting mineral deposits. It is not just surface seismic surveys which are used, but also borehole seismic methods. All in all, the usage of seismic methods for mineral exploration is steadily increasing.[1]

Hydrocarbon exploration

[edit]

Seismic reflection and refraction techniques are the most widely used geophysical technique in hydrocarbon exploration. They are used to map the subsurface distribution of stratigraphy and its structure which can be used to delineate potential hydrocarbon accumulations, both stratigraphic and structural deposits or "traps". Well logging is another widely used technique as it provides necessary high resolution information about rock and fluid properties in a vertical section, although they are limited in areal extent. This limitation in areal extent is the reason why seismic reflection techniques are so popular; they provide a method for interpolating and extrapolating well log information over a much larger area.

Gravity and magnetics are also used, with considerable frequency, in oil and gas exploration. These can be used to determine the geometry and depth of covered geological structures including uplifts, subsiding basins, faults, folds, igneous intrusions, and salt diapirs due to their unique density and magnetic susceptibility signatures compared to the surrounding rocks; the latter is particularly useful for metallic ores.

Remote sensing techniques, specifically hyperspectral imaging, have been used to detect hydrocarbon microseepages using the spectral signature of geochemically altered soils and vegetation.[2][3]

Specifically at sea, two methods are used: marine seismic reflection and electromagnetic seabed logging (SBL). Marine magnetotellurics (mMT), or marine Controlled Source Electro-Magnetics (mCSEM), can provide pseudo-direct detection of hydrocarbons by detecting resistivity changes over geological traps (signalled by seismic surveys).[4]

Civil engineering

[edit]

Ground penetrating radar

[edit]

Ground penetrating radar is a non-invasive technique, and is used within civil construction and engineering for a variety of uses, including detection of utilities (buried water, gas, sewerage, electrical and telecommunication cables), mapping of soft soils, overburden for geotechnical characterization, and other similar uses.[5]

Spectral-Analysis-of-Surface-Waves

[edit]

The Spectral-Analysis-of-Surface-Waves (SASW) method is another non-invasive technique, which is widely used in practice to detect the shear wave velocity profile of the soil. The SASW method relies on the dispersive nature of Raleigh waves in layered media, i.e., the wave-velocity depends on the load's frequency. A material profile, based on the SASW method, is thus obtained according to: a) constructing an experimental dispersion curve, by performing field experiments, each time using a different loading frequency, and measuring the surface wave-speed for each frequency; b) constructing a theoretical dispersion curve, by assuming a trial distribution for the material properties of a layered profile; c) varying the material properties of the layered profile, and repeating the previous step, until a match between the experimental dispersion curve, and the theoretical dispersion curve is attained. The SASW method renders a layered (one-dimensional) shear wave velocity profile for the soil.

Full waveform inversion
[edit]

Full-waveform-inversion (FWI) methods are among the most recent techniques for geotechnical site characterization, and are still under continuous development. The method is fairly general, and is capable of imaging the arbitrarily heterogeneous compressional and shear wave velocity profiles of the soil.[6][7]

Elastic waves are used to probe the site under investigation, by placing seismic vibrators on the ground surface. These waves propagate through the soil, and due to the heterogeneous geological structure of the site under investigation, multiple reflections and refractions occur. The response of the site to the seismic vibrator is measured by sensors (geophones), also placed on the ground surface. Two key-components are required for the profiling based on full-waveform inversion. These components are: a) a computer model for the simulation of elastic waves in semi-infinite domains;[8] and b) an optimization framework, through which the computed response is matched to the measured response by iteratively updating an initially assumed material distribution for the soil.[9]

Other techniques
[edit]

Civil engineering can also use remote sensing information for topographical mapping, planning, and environmental impact assessment. Airborne electromagnetic surveys are also used to characterize soft sediments in planning and engineering roads, dams, and other structures.[10]

Magnetotellurics has proven useful for delineating groundwater reservoirs, mapping faults around areas where hazardous substances are stored (e.g. nuclear power stations and nuclear waste storage facilities), and earthquake precursor monitoring in areas with major structures such as hydro-electric dams subject to high levels of seismic activity.

BS 5930 is the standard used in the UK as a code of practice for site investigations.

Archaeology

[edit]

Ground penetrating radar can be used to map buried artifacts, such as graves, mortuaries, wreck sites, and other shallowly buried archaeological sites.[11]

Ground magnetometric surveys can be used for detecting buried ferrous metals, useful in surveying shipwrecks, modern battlefields strewn with metal debris, and even subtle disturbances such as large-scale ancient ruins.

Sonar systems can be used to detect shipwrecks.[12] Active sonar systems emit sound pulses into the water which then bounce off of objects and are returned to the sonar transducer.[12] The sonar transducer is able to determine both the range and orientation of an underwater object by measuring the amount of time between the release of the sound pulse and its returned reception.[12] Passive sonar systems are used to detect noises from marine objects or animals.[12] This system does not emit sound pulses itself but instead focuses on sound detection from marine sources.[12] This system simply 'listens' to the ocean, rather than measuring the range or orientation of an object.[12]

Geophysical survey using magnetometer

Forensics

[edit]

Ground penetrating radar can be used to detect grave sites.[13] This detection is of both legal and cultural importance, providing an opportunity for affected families to pursue justice through legal punishment of those responsible and to experience closure over the loss of a loved one.[13]

Unexploded ordnance detection

[edit]
Warning sign from The National Trust indicating the presence of unexploded ordnance

Unexploded ordnance (or UXO) refers to the dysfunction or non-explosion of military explosives.[14] Examples of these include, but are not limited to: bombs, flares, and grenades.[14] It is important to be able to locate and contain unexploded ordnance to avoid injuries, and even possible death, to those who may come in contact with them.[14]

The issue of unexploded ordnance originated as a result of the Crimean War (1853-1856).[15] Before this, most unexploded ordnance was locally contained in smaller volumes, and was thus not a huge public issue.[15] However, with the introduction of more widespread warfare, these quantities increased and were thus easy to lose track of and contain.[15] According to Hooper & Hambric in their piece Unexploded Ordnance (UXO): The Problem, if we are unable to move away from war in the context of conflict resolution, this problem will only continue to get worse and will likely take more than a century to resolve.[15]

Since our global method of conflict resolution banks on warfare, we must be able to rely on specific practices to detect this unexploded ordnance, such as magnetic and electromagnetic surveys.[16] By looking at differences in magnetic susceptibility and/or electrical conductivity in relation to the unexploded ordnance and the surrounding geology (soil, rock, etc.), we are able to detect and contain unexploded ordnance.[16]

See also

[edit]

References

[edit]
  1. ^ Malehmir, Alireza; Urosevic, Milovan; Bellefleur, Gilles; Juhlin, Christopher; Milkereit, Bernd (September 2012). "Seismic methods in mineral exploration and mine planning — Introduction". Geophysics. 77 (5): WC1 – WC2. Bibcode:2012Geop...77C...1M. doi:10.1190/2012-0724-SPSEIN.1. hdl:20.500.11937/5522. ISSN 0016-8033.
  2. ^ Khan, S.D.; Jacobson, S. (2008). "Remote Sensing and Geochemistry for Detecting Hydrocarbon Microseepages". Geological Society of America Bulletin. 120 (1–2): 96–105. Bibcode:2008GSAB..120...96K. doi:10.1130/b26182.1.
  3. ^ Petrovic, A.; Khan, S.D.; Chafetz, H. (2008). "Remote detection and geochemical studies for finding hydrocarbon-induced alterations in Lisbon Valley, Utah". Marine and Petroleum Geology. 25 (8): 696–705. Bibcode:2008MarPG..25..696P. doi:10.1016/j.marpetgeo.2008.03.008.
  4. ^ Stéphane Sainson, Electromagnetic seabed logging, A new tool for geoscientists. Ed. Springer, 2017
  5. ^ Benedetto, Andrea., and Lara. Pajewski. Civil Engineering Applications of Ground Penetrating Radar. Ed. Andrea. Benedetto and Lara. Pajewski. 1st ed. 2015. Cham: Springer International Publishing, 2015.
  6. ^ Kallivokas, L.F.; Fathi, A.; Kucukcoban, S.; Stokoe II, K.H.; Bielak, J.; Ghattas, O. (2013). "Site characterization using full waveform inversion". Soil Dynamics and Earthquake Engineering. 47: 62–82. Bibcode:2013SDEE...47...62K. doi:10.1016/j.soildyn.2012.12.012.
  7. ^ Fathi, Arash; Poursartip, Babak; Stokoe II, Kenneth H; Kallivokas, Loukas F. (2016). "Three-dimensional P- and S-wave velocity profiling of geotechnical sites using full-waveform inversion driven by field data". Soil Dynamics and Earthquake Engineering. 87: 63–81. Bibcode:2016SDEE...87...63F. doi:10.1016/j.soildyn.2016.04.010.
  8. ^ Fathi, Arash; Poursartip, Babak; Kallivokas, Loukas (2015). "Time-domain hybrid formulations for wave simulations in three-dimensional PML-truncated heterogeneous media". International Journal for Numerical Methods in Engineering. 101 (3): 165–198. Bibcode:2015IJNME.101..165F. doi:10.1002/nme.4780. S2CID 122812832.
  9. ^ Fathi, Arash; Kallivokas, Loukas; Poursartip, Babak (2015). "Full-waveform inversion in three-dimensional PML-truncated elastic media". Computer Methods in Applied Mechanics and Engineering. 296: 39–72. arXiv:1504.08340. Bibcode:2015CMAME.296...39F. doi:10.1016/j.cma.2015.07.008. S2CID 119148953.
  10. ^ Okazaki, Kenji et al. “Airborne Electromagnetic and Magnetic Surveys for Long Tunnel Construction Design.” Physics and chemistry of the earth. Parts A/B/C 36.16 (2011): 1237–1246.
  11. ^ Fassbinder, J?rg W. E. “Magnetometry in Archaeology – From Theory to Practice.” Rossiiskaia arkheologiia 2019.3 (2019): 75–91.
  12. ^ a b c d e f US Department of Commerce, National Oceanic and Atmospheric Administration. "What is sonar?". oceanservice.noaa.gov. Retrieved 2025-08-05.
  13. ^ a b Berezowski, Victoria; Mallett, Xanthé; Ellis, Justin; Moffat, Ian (2021). "Using Ground Penetrating Radar and Resistivity Methods to Locate Unmarked Graves: A Review". Remote Sensing. 13 (15): 2880. Bibcode:2021RemS...13.2880B. doi:10.3390/rs13152880. ISSN 2072-4292.
  14. ^ a b c Defence, National (2025-08-05). "What is Unexploded Explosive Ordnance (UXO)?". www.canada.ca. Retrieved 2025-08-05.
  15. ^ a b c d Hooper, Andrew E.; Hambric, Harry N. (Hap) (2019), "Unexploded Ordnance (UXO): The Problem", Detection and Identification of Visually Obscured Targets, pp. 1–8, doi:10.1201/9781315141084-1, ISBN 9781315141084, S2CID 212963579, retrieved 2025-08-05
  16. ^ a b Butler, Dwain K. (2025-08-05). "Implications of magnetic backgrounds for unexploded ordnance detection". Journal of Applied Geophysics. 54 (1): 111–125. Bibcode:2003JAG....54..111B. doi:10.1016/j.jappgeo.2003.08.022. ISSN 0926-9851.
808什么意思 为什么会胰岛素抵抗 神什么气什么 505是什么意思 血象是指什么
紫萱名字的含义是什么 八面玲珑代表什么生肖 哺乳期抽烟对宝宝有什么影响 吃什么对甲状腺有好处 表姐的儿子叫我什么
血清铁蛋白高说明什么 过敏有什么症状表现 九月二十二是什么星座 看腰挂什么科 pos是什么意思
膝盖痛挂什么科 无济于事的济是什么意思 一个月不来月经是什么原因 什么叫便溏 共轭什么意思
槟榔是什么味道hcv8jop8ns4r.cn 不来月经吃什么药催经hcv8jop5ns1r.cn 四川地震前有什么预兆hcv9jop2ns1r.cn 同房有点痛什么原因cj623037.com 七月八号是什么日子hcv9jop7ns2r.cn
化妆棉是干什么用的hcv9jop6ns1r.cn 诗情画意是什么意思hcv8jop6ns3r.cn 人的本质属性是什么hcv7jop5ns0r.cn 隐形眼镜什么牌子好baiqunet.com 什么叫五行hcv9jop5ns3r.cn
沉不住气什么意思hcv7jop6ns7r.cn 肾结水是什么原因造成的hcv8jop2ns2r.cn 一抹是什么意思zhongyiyatai.com iss是什么意思hcv7jop9ns1r.cn 腿抖是什么病的预兆mmeoe.com
长癣是什么原因引起的hcv7jop5ns2r.cn 袋鼠喜欢吃什么食物hcv9jop7ns9r.cn 册那是什么意思hcv8jop6ns6r.cn 支气管炎是什么症状sscsqa.com 黄芪是什么味道hcv8jop1ns2r.cn
百度