牛肉用什么腌制比较嫩| 无名指麻木是什么原因| 大便长期不成形是什么原因| 怀孕吃什么水果好对胎儿好| 医学ace是什么意思| 智齿发炎肿痛吃什么药| 转的第三笔是什么| 宫腔粘连是什么意思| 证过二是什么意思| 大腿外侧麻木是什么原因| 舌炎吃什么药最好| 铎读什么| 看身高挂什么科| 什么如什么| 建设性意见是什么意思| 烧仙草是什么| 马中赤兔人中吕布什么意思| 妮是什么意思| 子宫脱垂是什么症状| 耳朵长痣代表什么| 中性粒细胞是什么| 红红的眼睛是什么生肖| xxoo是什么| 白带发黄有异味是什么原因| 藤椒是什么| 什么样的降落伞| 红斑狼疮是什么病| 古灵精怪是什么意思| 朱元璋是什么民族| 风湿是什么原因造成的| 陪伴是最长情的告白下一句是什么| 利率是什么意思| 吃汤圆是什么节日| 松针泡水喝有什么功效| 冬日暖阳是什么意思| 高压低是什么原因引起的| 民营企业和私营企业有什么区别| 什么是肾功能不全| 三七粉是治什么病的| 胃疼是什么病| 新疆有什么特产| dpo是什么意思| 脸上出油多是什么原因| 胆汁反流是什么意思| 洋桔梗花语是什么| 下饭菜都有什么菜| 青海湖里面有什么鱼| 退役和退伍有什么区别| 左眼屈光不正是什么意思| lmp医学上什么意思| 骨质增生挂什么科| 85属什么生肖| 检察院是做什么的| 蝙蝠飞进家里预示什么| 金钱能买来什么但买不来什么| 一语惊醒梦中人是什么意思| 大姨的女儿叫什么| 叶黄素对眼睛有什么好处| nsfw是什么意思| 慢性浅表性胃炎吃什么药好| 马提尼是什么酒| 有什么故事| 八是什么生肖| 结节是什么病| 鱼的偏旁部首是什么| kate是什么意思| 检查胆囊挂什么科| 白带是什么| 人参片泡水喝有什么功效和作用| 6月12日是什么星座| 祝福是什么意思| 6月11号是什么星座| 生殖器疱疹用什么药| 619是什么意思| 质子泵抑制剂是什么药| 什么人不能吃马齿苋| 例假一个月来两次是什么原因| 哎什么意思| sd值是什么意思| 法西斯战争是什么意思| 胃息肉吃什么好| 清鱼是什么鱼| 7.11是什么日子| 笨拙是什么意思| 手掌心痒是什么原因| 什么是职业暴露| 白莲花什么意思| 积液是什么原因造成的| hpv长什么样| 小三阳吃什么药能转阴| 果实属于什么器官| 什么是命题| 甲功七项检查什么| 做水果捞用什么酸奶好| 什么食物含硒| 老克勒是什么意思| 什么是漏斗胸| 鼻子痒是什么原因| 气口是什么意思| 侧切是什么意思| 片反过来念什么| 十八大什么时候| 女人脚肿是什么原因| 鳝鱼吃什么食物| 肉苁蓉有什么功效| 八仙过海指什么生肖| 孕酮是什么意思| 尿道感染应该吃什么药| 你有毒是什么意思| 长期咳嗽是什么原因| 9月21号是什么星座| 漂流需要准备什么东西| 做梦梦见掉牙齿是什么意思| 克加寸念什么| 吃酒酿有什么好处| 戒定真香是什么意思| 710是什么意思| 门静脉增宽是什么意思| 怀孕7天有什么症状| 探病买什么水果| 孕妇可以吃什么感冒药| 大腿抽筋是什么原因引起的| 办狗证需要什么资料| moda是什么牌子| 清明是什么季节| 嘴唇上火起泡用什么药| 有机食品是什么意思| 睡眠不好挂什么科| 额头上长斑是什么原因造成的| 什么的孙悟空| 不可开交是什么意思| 情人节什么时候| 明太鱼是什么鱼| 白茶什么样的好| 怀孕后乳房有什么变化| 什么危不什么| uv是什么意思| 经期可以吃什么水果| 党参有什么功效| 做包子用什么面粉| 干眼症是什么| 陈旧性心梗是什么意思| 拉屎不成形是什么原因| 熬夜流鼻血是什么原因| 圣女果是什么水果| 你是谁为了谁是什么歌| 绿豆汤不能和什么一起吃| 生意兴隆是什么生肖| 肩膀疼挂什么科| 甘油三酯高是什么病| 516是什么意思| 蝙蝠是什么类动物| 脚麻是什么原因| 胃肠外科是看什么病的| 风心病是什么病| 琼瑶剧是什么意思| 家政是干什么的| 营养土是什么土| 梦见建房子是什么预兆| 没落是什么意思| 孤枕难眠什么意思| 银屑病吃什么食物最好| 薜丁山是什么生肖| 辰时是什么时候| 本科是什么| 水瓶座后面是什么星座| 除皱针什么牌子效果最好| 蚱蜢吃什么食物| 孕早期吃什么有利于胎心胎芽发育| 乳腺结节三级是什么意思| 睡觉为什么会流口水| 接盘是什么意思| 消肿用什么药| 女性尿道口有小疙瘩是什么原因| 吃什么食物可以减肥| 焘是什么意思| 美人鱼2什么时候上映| 516是什么意思| 状元及第是什么意思| 水逆什么意思| 亲友是什么意思| 偷窥是什么意思| 缪在姓氏中读什么| 耳朵发烧是什么原因| 阳历6月21日是什么星座| 梦见死人的场面是什么兆头| 啮齿是什么意思| itp是什么意思| 猫瘟吃什么药| 鞘膜积液挂什么科| 2024年属什么生肖| 心阳虚吃什么中成药| 脚心发热吃什么药| 孕妇能吃什么水果最好| 不加要是什么字| 乔治白属于什么档次| 阴茎不硬吃什么| 斩金念什么| 头皮痒用什么止痒最好| 中国国酒是什么| 黄芪有什么好处| 什么草药治肿瘤最佳| 搬新家有什么讲究和准备的| 尿不尽是什么原因| 太学是什么意思| 申酉是什么时间| 仙人掌什么时候开花| 对视是什么意思| 红细胞低吃什么补得快| 发挥是什么意思| 白开水喝多了有什么危害| 红色的海鱼是什么鱼| 脚肿吃什么消肿最快| 年下是什么意思| 戾气太重是什么意思| 为什么有的人特别招蚊子| 晴雨伞是什么意思| 95年属于什么生肖| 无花果什么品种最好吃| 执子之手与子偕老是什么意思| 田螺吃什么食物| 急性胃肠炎吃什么药| 五十年婚姻是什么婚| 腰间盘膨出吃什么药效果好| 马来西亚人为什么会说中文| eagle是什么意思| 杜仲泡酒有什么功效| ca199检查是什么意思| 老鹰的天敌是什么| 为什么会来月经| 蜂蜜对人体有什么好处和功效| 电视什么牌子好| 尿多吃什么药| 529是什么意思| 西米是什么字| 国债什么意思| 子宫颈肥大有什么危害| 滚刀肉是什么意思| 两栖动物是什么意思| 美容美体是干什么的| 外耳炎用什么药| 腹泻肚子疼吃什么药| 96615是什么电话| 乡试第一名叫什么| 配制酒是什么意思| 纸老虎是什么意思| 性有什么好处和坏处| 打嗝医学术语是什么| 吃饱了胃胀是什么原因| 扁桃体化脓吃什么药| 大麦是什么粮食| 指甲有凹陷是什么原因| 男生为什么要割包皮| 尿酸高说明什么问题| 女人梦见血是什么预兆| 弱视是什么| 高考三百多分能上什么学校| 鼓风机是干什么用的| 淤血是什么意思| 烧腊是什么意思| 小便很臭是什么原因| 什么是酮体| 反复发烧是什么原因| 脸上有红血丝是什么原因| 百度Jump to content

吉林省人民政府任命刘红霞为省粮食局副局长

From Wikipedia, the free encyclopedia
Electrospray (nanoSpray) ionization source
百度 中国气象局与交通运输部2018年03月24日联合发布全国主要公路气象预报3月24日20时至25日20时,北部山区、沿、部、北部和东、川西高原等地有小到中雪或雨夹雪,新疆北部山区、沿天山局地有大雪或暴雪;新疆、西藏东南部、西南地区东部、南部、大部、西部等地有小到中雨或阵雨,局地有大雨并伴有雷暴大风和短时等;另外,南部、大部、北部、东部、西部等地局地有雾。

Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions using an electrospray in which a high voltage is applied to a liquid to create an aerosol. It is especially useful in producing ions from macromolecules because it overcomes the propensity of these molecules to fragment when ionized. ESI is different from other ionization processes (e.g. matrix-assisted laser desorption/ionization, MALDI) since it may produce multiple-charged ions, effectively extending the mass range of the analyser to accommodate the kDa-MDa range observed in proteins and their associated polypeptide fragments.[1][2]

Mass spectrometry using ESI is called electrospray ionization mass spectrometry (ESI-MS) or, less commonly, electrospray mass spectrometry (ES-MS). ESI is a so-called 'soft ionization' technique, since there is very little fragmentation. This can be advantageous in the sense that the molecular ion (or more accurately a pseudo molecular ion) is almost always observed, however very little structural information can be gained from the simple mass spectrum obtained. This disadvantage can be overcome by coupling ESI with tandem mass spectrometry (ESI-MS/MS). Another important advantage of ESI is that solution-phase information can be retained into the gas-phase.

The electrospray ionization technique was first reported by Masamichi Yamashita and John Fenn in 1984,[3] and independently by Lidia Gall and co-workers in Soviet Union, also in 1984.[4] Gall's work was not recognised or translated in the western scientific literature until a translation was published in 2008.[4] The development of electrospray ionization for the analysis of biological macromolecules[5] was rewarded with the attribution of the Nobel Prize in Chemistry to John Bennett Fenn and Koichi Tanaka in 2002.[6] One of the original instruments used by Fenn is on display at the Science History Institute in Philadelphia, Pennsylvania.

History

[edit]
Diagram of electrospray ionization in positive mode: under high voltage, the Taylor cone emits a jet of liquid drops. The solvent from the droplets progressively evaporates, leaving them more and more charged. When the charge exceeds the Rayleigh limit the droplet explosively dissociates, leaving a stream of charged (positive) ions

In 1882, Lord Rayleigh theoretically estimated the maximum amount of charge a liquid droplet could carry before throwing out fine jets of liquid.[7] This is now known as the Rayleigh limit.

In 1914, John Zeleny published work on the behaviour of fluid droplets at the end of glass capillaries and presented evidence for different electrospray modes.[8] Wilson and Taylor[9] and Nolan investigated electrospray in the 1920s[10] and Macky in 1931.[11] The electrospray cone (now known as the Taylor cone) was described by Sir Geoffrey Ingram Taylor.[12]

The first use of electrospray ionization with mass spectrometry was reported by Malcolm Dole in 1968.[13][14] John Bennett Fenn was awarded the 2002 Nobel Prize in Chemistry for the development of electrospray ionization mass spectrometry in the late 1980s.[15]

Ionization mechanism

[edit]
Fenn's first electrospray ionization source coupled to a single quadrupole mass spectrometer

The liquid containing the analytes of interest (typically 10?6 - 10?4 M needed [16]) is dispersed by electrospray,[17] into a fine aerosol. Because the ion formation involves extensive solvent evaporation (also termed desolvation), the typical solvents for electrospray ionization are prepared by mixing water with volatile organic compounds (e.g. methanol[18] acetonitrile). To decrease the initial droplet size, compounds that increase the conductivity (e.g. acetic acid) are customarily added to the solution. These species also act to provide a source of protons to facilitate the ionization process. Large-flow electrosprays can benefit from nebulization of a heated inert gas such as nitrogen or carbon dioxide in addition to the high temperature of the ESI source.[19] The aerosol is sampled into the first vacuum stage of a mass spectrometer through a capillary carrying a potential difference of approximately 3000 V, which can be heated to aid further solvent evaporation from the charged droplets. The solvent evaporates from a charged droplet until it becomes unstable upon reaching its Rayleigh limit. At this point, the droplet deforms as the electrostatic repulsion of like charges, in an ever-decreasing droplet size, becomes more powerful than the surface tension holding the droplet together.[20] At this point the droplet undergoes Coulomb fission, whereby the original droplet 'explodes' creating many smaller, more stable droplets. The new droplets undergo desolvation and subsequently further Coulomb fissions. During the fission, the droplet loses a small percentage of its mass (1.0–2.3%) along with a relatively large percentage of its charge (10–18%).[21][22]

There are two major theories that explain the final production of gas-phase ions: the ion evaporation model (IEM) and the charge residue model (CRM). The IEM suggests that as the droplet reaches a certain radius the field strength at the surface of the droplet becomes large enough to assist the field desorption of solvated ions.[23][24] The CRM suggests that electrospray droplets undergo evaporation and fission cycles, eventually leading progeny droplets that contain on average one analyte ion or less.[13] The gas-phase ions form after the remaining solvent molecules evaporate, leaving the analyte with the charges that the droplet carried.

IEM, CRM and CEM schematic.

A large body of evidence shows either directly or indirectly that small ions (from small molecules) are liberated into the gas phase through the ion evaporation mechanism,[24][25][citation needed][26] while larger ions (from folded proteins for instance) form by charged residue mechanism.[27][28][29]

A third model invoking combined charged residue-field emission has been proposed.[30] Another model called chain ejection model (CEM) is proposed for disordered polymers (unfolded proteins).[31]

The ions observed by mass spectrometry may be quasimolecular ions created by the addition of a hydrogen cation and denoted [M + H]+, or of another cation such as sodium ion, [M + Na]+, or the removal of a hydrogen nucleus, [M ? H]?. Multiply charged ions such as [M + nH]n+ are often observed. For large macromolecules, there can be many charge states, resulting in a characteristic charge state envelope. All these are even-electron ion species: electrons (alone) are not added or removed, unlike in some other ionization sources. The analytes are sometimes involved in electrochemical processes, leading to shifts of the corresponding peaks in the mass spectrum. This effect is demonstrated in the direct ionization of noble metals such as copper, silver and gold using electrospray.[32]

The efficiency of generating the gas phase ions for small molecules in ESI varies depending on the compound structure, the solvent used and instrumental parameters.[33] The differences in ionization efficiency reach more than 1 million times.

Variants

[edit]

The electrosprays operated at low flow rates generate much smaller initial droplets, which ensure improved ionization efficiency. In 1993 Gale and Richard D. Smith reported significant sensitivity increases could be achieved using lower flow rates, and down to 200 nL/min.[34] In 1994, two research groups coined the name micro-electrospray (microspray) for electrosprays working at low flow rates. Emmett and Caprioli demonstrated improved performance for HPLC-MS analyses when the electrospray was operated at 300–800 nL/min.[35] Wilm and Mann demonstrated that a capillary flow of ~ 25 nL/min can sustain an electrospray at the tip of emitters fabricated by pulling glass capillaries to a few micrometers.[36] The latter was renamed nano-electrospray (nanospray) in 1996.[37][38] Currently the name nanospray is also in use for electrosprays fed by pumps at low flow rates,[39] not only for self-fed electrosprays. Although there may not be a well-defined flow rate range for electrospray, microspray, and nano-electrospray,[40] studied "changes in analyte partition during droplet fission prior to ion release".[40] In this paper, they compare results obtained by three other groups.[41][42][43] and then measure the signal intensity ratio [Ba2+ + Ba+]/[BaBr+] at different flow rates.

Cold spray ionization is a form of electrospray in which the solution containing the sample is forced through a small cold capillary (10–80 °C) into an electric field to create a fine mist of cold charged droplets.[44] Applications of this method include the analysis of fragile molecules and guest-host interactions that cannot be studied using regular electrospray ionization.

Electrospray ionization has also been achieved at pressures as low as 25 torr and termed subambient pressure ionization with nanoelectrospray (SPIN) based upon a two-stage ion funnel interface developed by Richard D. Smith and coworkers.[45] The SPIN implementation provided increased sensitivity due to the use of ion funnels that helped confine and transfer ions to the lower pressure region of the mass spectrometer. Nanoelectrospray emitter is made out of a fine capillary with a small aperture about 1–3 micrometer. For sufficient conductivity this capillary is usually sputter-coated with conductive material, e.g. gold. Nanoelectrospray ionization consumes only a few microliters of a sample and forms smaller droplets.[46] Operation at low pressure was particularly effective for low flow rates where the smaller electrospray droplet size allowed effective desolvation and ion formation to be achieved. As a result, the researchers were later able to demonstrate achieving an excess of 50% overall ionization utilization efficiency for transfer of ions from the liquid phase, into the gas phase as ions, and through the dual ion funnel interface to the mass spectrometer.[47]

Ambient ionization

[edit]
Diagram of a DESI ambient ionization source

In ambient ionization, the formation of ions occurs outside the mass spectrometer without sample preparation.[48][49][50] Electrospray is used for ion formation in a number of ambient ion sources.

Desorption electrospray ionization (DESI) is an ambient ionization technique in which a solvent electrospray is directed at a sample.[51][52] The electrospray is attracted to the surface by applying a voltage to the sample. Sample compounds are extracted into the solvent which is again aerosolized as highly charged droplets that evaporate to form highly charged ions. After ionization, the ions enter the atmospheric pressure interface of the mass spectrometer. DESI allows for ambient ionization of samples at atmospheric pressure, with little sample preparation.

Diagram of a SESI ambient ionization source

Extractive electrospray ionization is a spray-type, ambient ionization method that uses two merged sprays, one of which is generated by electrospray.[49]

Laser-based electrospray-based ambient ionization is a two-step process in which a pulsed laser is used to desorb or ablate material from a sample and the plume of material interacts with an electrospray to create ions.[49] For ambient ionization, the sample material is deposited on a target near the electrospray. The laser desorbs or ablates material from the sample which is ejected from the surface and into the electrospray which produces highly charged ions. Examples are electrospray laser desorption ionization, matrix-assisted laser desorption electrospray ionization, and laser ablation electrospray ionization.

SESI-MS SUPER SESI coupled with Thermo Fisher Scientific-Orbitrap

Electrostatic spray ionization (ESTASI) involved the analysis of samples located on a flat or porous surface, or inside a microchannel. A droplet containing analytes is deposited on a sample area, to which a pulsed high voltage to is applied. When the electrostatic pressure is larger than the surface tension, droplets and ions are sprayed.

Secondary electrospray ionization (SESI) is an spray type, ambient ionization method where charging ions are produced by means of an electrospray. These ions then charge vapor molecules in the gas phase when colliding with them.[53][54]

In paper spray ionization, the sample is applied to a piece of paper, solvent is added, and a high voltage is applied to the paper, creating ions.

Applications

[edit]
The outside of the electrospray interface on an LTQ mass spectrometer.

Electrospray is used to study protein folding.[55][56][57]

Liquid chromatography–mass spectrometry

[edit]

Electrospray ionization is the ion source of choice to couple liquid chromatography with mass spectrometry (LC-MS). The analysis can be performed online, by feeding the liquid eluting from the LC column directly to an electrospray, or offline, by collecting fractions to be later analyzed in a classical nanoelectrospray-mass spectrometry setup. Among the numerous operating parameters in ESI-MS, for proteins,[58] the electrospray voltage has been identified as an important parameter to consider in ESI LC/MS gradient elution.[59] The effect of various solvent compositions[60] (such as TFA[61] or ammonium acetate,[22] or supercharging reagents,[62][63][64][65] or derivitizing groups[66]) or spraying conditions[67] on electrospray-LCMS spectra and/or nanoESI-MS spectra.[68] have been studied.

Capillary electrophoresis-mass spectrometry (CE-MS)

[edit]

Capillary electrophoresis-mass spectrometry was enabled by an ESI interface that was developed and patented by Richard D. Smith and coworkers at Pacific Northwest National Laboratory, and shown to have broad utility for the analysis of very small biological and chemical compound mixtures, and even extending to a single biological cell.

Noncovalent gas phase interactions

[edit]

Electrospray ionization is also utilized in studying noncovalent gas phase interactions. The electrospray process is thought to be capable of transferring liquid-phase noncovalent complexes into the gas phase without disrupting the noncovalent interaction. Problems[22][69] such as non specific interactions[70] have been identified when studying ligand substrate complexes by ESI-MS or nanoESI-MS. An interesting example of this is studying the interactions between enzymes and drugs which are inhibitors of the enzyme.[71][72][73] Competition studies between STAT6 and inhibitors[73][74][75] have used ESI as a way to screen for potential new drug candidates.

Electrospray ionization can even be used for studying protein complexes >1 MDa.[76][16]

See also

[edit]

References

[edit]
  1. ^ Ho, CS; Chan MHM; Cheung RCK; Law LK; Lit LCW; Ng KF; Suen MWM; Tai HL (February 2003). "Electrospray Ionisation Mass Spectrometry: Principles and Clinical Applications". Clin Biochem Rev. 24 (1): 3–12. PMC 1853331. PMID 18568044.
  2. ^ Pitt, James J (February 2009). "Principles and Applications of Liquid Chromatography-Mass Spectrometry in Clinical Biochemistry". Clin Biochem Rev. 30 (1): 19–34. PMC 2643089. PMID 19224008.
  3. ^ Yamashita, Masamichi; Fenn, John B. (September 1984). "Electrospray ion source. Another variation on the free-jet theme". The Journal of Physical Chemistry. 88 (20): 4451–4459. doi:10.1021/j150664a002.
  4. ^ a b Alexandrov, M. L.; Gall, L. N.; Krasnov, N. V.; Nikolaev, V. I.; Pavlenko, V. A.; Shkruov, V. A. (1984). "Extraction of ions from solutions under atmospheric pressure as a method for mass spectrometric analysis of bioorganic compounds". Doklady Akad. SSSR. 277 (3): 379–383. Bibcode:2008RCMS...22..267A. doi:10.1002/rcm.3113. PMID 18181250.
  5. ^ Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. (1989). "Electrospray ionization for mass spectrometry of large biomolecules". Science. 246 (4926): 64–71. Bibcode:1989Sci...246...64F. CiteSeerX 10.1.1.522.9458. doi:10.1126/science.2675315. PMID 2675315.
  6. ^ Markides, K; Gr?slund, A. "Advanced information on the Nobel Prize in Chemistry 2002" (PDF).
  7. ^ Rayleigh, L. (1882). "On the Equilibrium of Liquid Conducting Masses charged with Electricity". Philosophical Magazine. 14 (87): 184–186. doi:10.1080/14786448208628425.
  8. ^ Zeleny, J. (1914). "The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces". Physical Review. 3 (2): 69–91. Bibcode:1914PhRv....3...69Z. doi:10.1103/PhysRev.3.69.
  9. ^ Wilson, C. T.; G. I Taylor (1925). "The bursting of soap bubbles in a uniform electric field". Proc. Cambridge Philos. Soc. 22 (5): 728. Bibcode:1925PCPS...22..728W. doi:10.1017/S0305004100009609. S2CID 137905700.
  10. ^ Nolan, J. J. (1926). "Universal scaling laws for the disintegration of electrified drops". Proc. R. Ir. Acad. A. 37: 28.
  11. ^ Macky, W. A. (October 1, 1931). "Some Investigations on the Deformation and Breaking of Water Drops in Strong Electric Fields". Proceedings of the Royal Society A. 133 (822): 565–587. Bibcode:1931RSPSA.133..565M. doi:10.1098/rspa.1931.0168.
  12. ^ Geoffrey Taylor (1964). "Disintegration of Water Droplets in an Electric Field". Proceedings of the Royal Society A. 280 (1382): 383–397. Bibcode:1964RSPSA.280..383T. doi:10.1098/rspa.1964.0151. JSTOR 2415876. S2CID 15067908.
  13. ^ a b Dole M, Mack LL, Hines RL, Mobley RC, Ferguson LD, Alice MB (1968). "Molecular Beams of Macroions". Journal of Chemical Physics. 49 (5): 2240–2249. Bibcode:1968JChPh..49.2240D. doi:10.1063/1.1670391.
  14. ^ Birendra N. Pramanik; A.K. Ganguly; Michael L. Gross (28 February 2002). Applied Electrospray Mass Spectrometry: Practical Spectroscopy Series. CRC Press. pp. 4–. ISBN 978-0-8247-4419-9.
  15. ^ "Press Release: The Nobel Prize in Chemistry 2002". The Nobel Foundation. 2025-08-06. Retrieved 2025-08-06.
  16. ^ a b Gross, Jürgen H. (2017), "Electrospray Ionization", Mass Spectrometry, Cham: Springer International Publishing, pp. 721–778, doi:10.1007/978-3-319-54398-7_12, ISBN 978-3-319-54397-0, retrieved 2025-08-06
  17. ^ Pozniak BP, Cole RB (2007). "Current Measurements within the Electrospray Emitter". J. Am. Soc. Mass Spectrom. 18 (4): 737–748. doi:10.1016/j.jasms.2006.11.012. PMID 17257852.
  18. ^ Olumee; et al. (1998). "Droplet Dynamics Changes in Electrostatic Sprays of Methanol-Water Mixtures". J. Phys. Chem. A. 102 (46): 9154–9160. Bibcode:1998JPCA..102.9154O. CiteSeerX 10.1.1.661.5000. doi:10.1021/jp982027z.
  19. ^ Fernández De La Mora J (2007). "The Fluid Dynamics of Taylor Cones". Annual Review of Fluid Mechanics. 39 (1): 217–243. Bibcode:2007AnRFM..39..217F. doi:10.1146/annurev.fluid.39.050905.110159.
  20. ^ Cole, Richard B (2010). Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Practicalities, and Biological Applications (2 ed.). Wiley. p. 4. ISBN 978-0471741077.
  21. ^ Li KY, Tu H, Ray AK (April 2005). "Charge limits on droplets during evaporation". Langmuir. 21 (9): 3786–94. doi:10.1021/la047973n. PMID 15835938.
  22. ^ a b c Kebarle P, Verkerk UH (2009). "Electrospray: from ions in solution to ions in the gas phase, what we know now". Mass Spectrom Rev. 28 (6): 898–917. Bibcode:2009MSRv...28..898K. doi:10.1002/mas.20247. PMID 19551695.
  23. ^ Iribarne JV, Thomson BA (1976). "On the evaporation of small ions from charged droplets". Journal of Chemical Physics. 64 (6): 2287–2294. Bibcode:1976JChPh..64.2287I. doi:10.1063/1.432536.
  24. ^ a b Nguyen S, Fenn JB (January 2007). "Gas-phase ions of solute species from charged droplets of solutions". Proc. Natl. Acad. Sci. USA. 104 (4): 1111–7. Bibcode:2007PNAS..104.1111N. doi:10.1073/pnas.0609969104. PMC 1783130. PMID 17213314.
  25. ^ Gamero-Casta?o M (2000). "Direct measurement of ion evaporation kinetics from electrified liquid surfaces". J. Chem. Phys. 113 (2): 815. Bibcode:2000JChPh.113..815G. doi:10.1063/1.481857. S2CID 36112510.
  26. ^ de la Mora Fernandez (2000). "Electrospray ionization of large multiply charged species proceeds via Dole's charged residue mechanism". Analytica Chimica Acta. 406: 93–104. doi:10.1016/S0003-2670(99)00601-7. An evaluation of the electric field on the drop surface at the point when it just ceases to be spherical (yet carries the total ion charge z) indicates that small PEG ions may be formed by ion evaporation. The break observed in the charge distribution may perhaps mean that the shift from the Dole to the ion evaporation mechanism arises at m(unintelligible)104[clarification needed], though this inference is highly hypothetical.
  27. ^ de la Mora Fernandez (2000). "Electrospray ionization of large multiply charged species proceeds via Dole's charged residue mechanism". Analytica Chimica Acta. 406: 93–104. doi:10.1016/S0003-2670(99)00601-7.
  28. ^ de la Mora Fernandez (2000). "Electrospray ionization of large multiply charged species proceeds via Dole's charged residue mechanism". Analytica Chimica Acta. 406: 93–104. doi:10.1016/S0003-2670(99)00601-7. For most published data examined, zmax is between 65% and 110% of zR, providing strong support in favor of Dole's charged residue mechanism, at least for masses from 3.3 kD up to 1.4 MD. Other large but less compact ions from proteins and linear chains of polyethylene glycols (PEGs) have zmax values considerably larger than zR, apparently implying that they also formas charged residues, though from non-spherical drops held together by the polymer backbone.
  29. ^ de la Mora Fernandez (2000). "Electrospray ionization of large multiply charged species proceeds via Dole's charged residue mechanism". Analytica Chimica Acta. 406: 93–104. doi:10.1016/S0003-2670(99)00601-7. The data do show a nearly discontinuous jump in the observed m/z for a mass somewhere between 20,000 and 50,000, and it is tempting to conclude that this is due to a corresponding transition where the ionization mechanism shifts from one type to the other. This would correspond to a critical value of z in the vicinity of 50, with a corresponding electric field of 2.6 V/nm. Of course, this is entirely hypothetical, and there is yet no compelling evidence of any kind indicating that an ion with as many as 30 charges can be formed by field evaporation.
  30. ^ Hogan CJ, Carroll JA, Rohrs HW, Biswas P, Gross ML (January 2009). "Combined charged residue-field emission model of macromolecular electrospray ionization". Anal. Chem. 81 (1): 369–77. doi:10.1021/ac8016532. PMC 2613577. PMID 19117463.
  31. ^ Konermann, Lars (2013). "Unraveling the Mechanism of Electrospray Ionization". Analytical Chemistry. 85 (1): 2–9. doi:10.1021/ac302789c. PMID 23134552.
  32. ^ Li, Anyin; Luo, Qingjie; Park, So-Jung; Cooks, R. Graham (2014). "Synthesis and Catalytic Reactions of Nanoparticles formed by Electrospray Ionization of Coinage Metals". Angewandte Chemie International Edition. 53 (12): 3147–3150. doi:10.1002/anie.201309193. ISSN 1433-7851. PMID 24554582.
  33. ^ Kruve, Anneli; Kaupmees, Karl; Liigand, Jaanus; Leito, Ivo (2014). "Negative Electrospray Ionization via Deprotonation: Predicting the Ionization Efficiency". Analytical Chemistry. 86 (10): 4822–4830. doi:10.1021/ac404066v. PMID 24731109.
  34. ^ Gale DC, Smith RD (1993). "Small Volume and Low Flow Rate Electrospray Ionization Mass Spectrometry for Aqueous Samples". Rapid Commun. Mass Spectrom. 7 (11): 1017–1021. Bibcode:1993RCMS....7.1017G. doi:10.1002/rcm.1290071111.
  35. ^ Emmett MR, Caprioli RM (1994). "Micro-electrospray mass spectrometry: ultra-high-sensitivity analysis of peptides and proteins". J. Am. Soc. Mass Spectrom. 5 (7): 605–613. doi:10.1016/1044-0305(94)85001-1. PMID 24221962.
  36. ^ Wilm MS, Mann M (1994). "Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last?". Int. J. Mass Spectrom. Ion Process. 136 (2–3): 167–180. Bibcode:1994IJMSI.136..167W. doi:10.1016/0168-1176(94)04024-9.
  37. ^ Wilm M, Mann M (1996). "Analytical properties of the nanoelectrospray ion source". Anal. Chem. 68 (1): 1–8. doi:10.1021/ac9509519. PMID 8779426.
  38. ^ Gibson; Mugo, Samuel M.; Oleschuk, Richard D.; et al. (2009). "Nanoelectrospray emitters: Trends and perspective". Mass Spectrometry Reviews. 28 (6): 918–936. Bibcode:2009MSRv...28..918G. doi:10.1002/mas.20248. PMID 19479726.
  39. ^ Page JS, Marginean I, Baker ES, Kelly RT, Tang K, Smith RD (December 2009). "Biases in ion transmission through an electrospray ionization-mass spectrometry capillary inlet". J. Am. Soc. Mass Spectrom. 20 (12): 2265–72. doi:10.1016/j.jasms.2009.08.018. PMC 2861838. PMID 19815425.
  40. ^ a b Schmidt A, Karas M, Dülcks T (May 2003). "Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI?". J. Am. Soc. Mass Spectrom. 14 (5): 492–500. doi:10.1016/S1044-0305(03)00128-4. PMID 12745218.
  41. ^ Wilm M. S.; Mann M. (1994). "Electrospray and Taylor-Cone Theory, Dole's Beam of Macromolecules at Last?". Int. J. Mass Spectrom. Ion Process. 136 (2–3): 167–180. Bibcode:1994IJMSI.136..167W. doi:10.1016/0168-1176(94)04024-9.
  42. ^ Fernandez de la Mora J., Loscertales I. G. (2006). "The Current Emitted by Highly Conducting Taylor Cones". J. Fluid Mech. 260: 155–184. Bibcode:1994JFM...260..155D. doi:10.1017/S0022112094003472. S2CID 122935117.
  43. ^ Pfeifer RJ, Hendricks (1968). "Parametric Studies of Electrohydrodynamic Spraying". AIAA J. 6 (3): 496–502. Bibcode:1968AIAAJ...6..496H. doi:10.2514/3.4525.
  44. ^ RSC Chemical Methods Ontology, Cold-spray ionisation mass spectrometry
  45. ^ Page JS, Tang K, Kelly RT, Smith RD (2008). "A subambient pressure ionization with nanoelectrospray (SPIN) source and interface for improved sensitivity in mass spectrometry". Analytical Chemistry. 80 (5): 1800–1805. doi:10.1021/ac702354b. PMC 2516344. PMID 18237189.
  46. ^ Karas, M.; Bahr, U.; Dülcks, T. (2025-08-06). "Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine". Fresenius' Journal of Analytical Chemistry. 366 (6–7): 669–676. doi:10.1007/s002160051561. ISSN 0937-0633. PMID 11225778. S2CID 24730378.
  47. ^ I. Marginean; J. S. Page; A. V. Tolmachev; K. Tang; R. D. Smith (2010). "Achieving 50% Ionization Efficiency in Subambient Pressure Ionization with Nanoelectrospray". Analytical Chemistry. 82 (22): 9344–9349. doi:10.1021/ac1019123. PMC 2982749. PMID 21028835.
  48. ^ Cooks, R. Graham; Ouyang, Zheng; Takats, Zoltan; Wiseman, Justin M. (2006). "Ambient Mass Spectrometry". Science. 311 (5767): 1566–70. Bibcode:2006Sci...311.1566C. doi:10.1126/science.1119426. PMID 16543450. S2CID 98131681.
  49. ^ a b c Monge, María Eugenia; Harris, Glenn A.; Dwivedi, Prabha; Fernández, Facundo M. (2013). "Mass Spectrometry: Recent Advances in Direct Open Air Surface Sampling/Ionization". Chemical Reviews. 113 (4): 2269–2308. doi:10.1021/cr300309q. ISSN 0009-2665. PMID 23301684.
  50. ^ Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie (2010). "Ambient Ionization Mass Spectrometry". Annual Review of Analytical Chemistry. 3 (1): 43–65. Bibcode:2010ARAC....3...43H. doi:10.1146/annurev.anchem.111808.073702. ISSN 1936-1327. PMID 20636033.
  51. ^ Z. Takáts; J.M. Wiseman; B. Gologan; R.G. Cooks (2004). "Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization". Science. 306 (5695): 471–473. Bibcode:2004Sci...306..471T. doi:10.1126/science.1104404. PMID 15486296. S2CID 22994482.
  52. ^ Takáts Z, Wiseman JM, Cooks RG (2005). "Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology". Journal of Mass Spectrometry. 40 (10): 1261–75. Bibcode:2005JMSp...40.1261T. doi:10.1002/jms.922. PMID 16237663.
  53. ^ Vidal-de-Miguel, G.; Macía, M.; Pinacho, P.; Blanco, J. (2025-08-06). "Low-Sample Flow Secondary Electrospray Ionization: Improving Vapor Ionization Efficiency". Analytical Chemistry. 84 (20): 8475–8479. doi:10.1021/ac3005378. ISSN 0003-2700. PMID 22970991.
  54. ^ Barrios-Collado, César; Vidal-de-Miguel, Guillermo; Martinez-Lozano Sinues, Pablo (February 2016). "Numerical modeling and experimental validation of a universal secondary electrospray ionization source for mass spectrometric gas analysis in real-time". Sensors and Actuators B: Chemical. 223: 217–225. doi:10.1016/j.snb.2015.09.073. hdl:20.500.11850/105470.
  55. ^ Konermann, L; Douglas, DJ (1998). "Equilibrium unfolding of proteins monitored by electrospray ionization mass spectrometry: Distinguishing two-state from multi-state transitions". Rapid Communications in Mass Spectrometry. 12 (8): 435–442. Bibcode:1998RCMS...12..435K. doi:10.1002/(SICI)1097-0231(19980430)12:8<435::AID-RCM181>3.0.CO;2-F. PMID 9586231.
  56. ^ Nemes; Goyal, Samita; Vertes, Akos; et al. (2008). "Conformational and Noncovalent Complexation Changes in Proteins during Electrospray Ionization". Analytical Chemistry. 80 (2): 387–395. doi:10.1021/ac0714359. PMID 18081323.
  57. ^ Sobott; Robinson (2004). "Characterising electrosprayed biomolecules using tandem-MS—the noncovalent GroEL chaperonin assembly". International Journal of Mass Spectrometry. 236 (1–3): 25–32. Bibcode:2004IJMSp.236...25S. doi:10.1016/j.ijms.2004.05.010.
  58. ^ Vaidyanathan S.; Kell D.B.; Goodacre R. (2004). "Selective detection of proteins in mixtures using electrospray ionization mass spectrometry: influence of instrumental settings and implications for proteomics". Analytical Chemistry. 76 (17): 5024–5032. doi:10.1021/ac049684+. PMID 15373437.
  59. ^ Marginean I, Kelly RT, Moore RJ, Prior DC, LaMarche BL, Tang K, Smith RD (April 2009). "Selection of the optimum electrospray voltage for gradient elution LC-MS measurements". J. Am. Soc. Mass Spectrom. 20 (4): 682–8. doi:10.1016/j.jasms.2008.12.004. PMC 2692488. PMID 19196520.
  60. ^ Iavarone; Jurchen, John C.; Williams, Evan R.; et al. (2000). "Effects of solvent on the maximum charge state and charge state distribution of protein ions produced by electrospray ionization". J. Am. Soc. Mass Spectrom. 11 (11): 976–985. doi:10.1016/S1044-0305(00)00169-0. PMC 1414794. PMID 11073261.
  61. ^ Garcia (2005). "The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high-performance liquid chromatography–electrospray mass spectrometry". Journal of Chromatography B. 825 (2): 111–123. doi:10.1016/j.jchromb.2005.03.041. PMID 16213445.
  62. ^ Teo CA, Donald WA (May 2014). "Solution additives for supercharging proteins beyond the theoretical maximum proton-transfer limit in electrospray ionization mass spectrometry". Anal. Chem. 86 (9): 4455–62. doi:10.1021/ac500304r. PMID 24712886.
  63. ^ Lomeli SH, Peng IX, Yin S, Loo RR, Loo JA (January 2010). "New reagents for increasing ESI multiple charging of proteins and protein complexes". J. Am. Soc. Mass Spectrom. 21 (1): 127–31. doi:10.1016/j.jasms.2009.09.014. PMC 2821426. PMID 19854660.
  64. ^ Lomeli SH, Yin S, Ogorzalek Loo RR, Loo JA (April 2009). "Increasing charge while preserving noncovalent protein complexes for ESI-MS". J. Am. Soc. Mass Spectrom. 20 (4): 593–6. doi:10.1016/j.jasms.2008.11.013. PMC 2789282. PMID 19101165.
  65. ^ Yin S, Loo JA (March 2011). "Top-Down Mass Spectrometry of Supercharged Native Protein-Ligand Complexes". Int J Mass Spectrom. 300 (2–3): 118–122. Bibcode:2011IJMSp.300..118Y. doi:10.1016/j.ijms.2010.06.032. PMC 3076692. PMID 21499519.
  66. ^ Krusemark CJ, Frey BL, Belshaw PJ, Smith LM (September 2009). "Modifying the charge state distribution of proteins in electrospray ionization mass spectrometry by chemical derivatization". J. Am. Soc. Mass Spectrom. 20 (9): 1617–25. doi:10.1016/j.jasms.2009.04.017. PMC 2776692. PMID 19481956.
  67. ^ Nemes P, Goyal S, Vertes A (January 2008). "Conformational and noncovalent complexation changes in proteins during electrospray ionization". Anal. Chem. 80 (2): 387–95. doi:10.1021/ac0714359. PMID 18081323.
  68. ^ Ramanathan R, Zhong R, Blumenkrantz N, Chowdhury SK, Alton KB (October 2007). "Response normalized liquid chromatography nanospray ionization mass spectrometry". J. Am. Soc. Mass Spectrom. 18 (10): 1891–9. doi:10.1016/j.jasms.2007.07.022. PMID 17766144.
  69. ^ Gabelica V, Vreuls C, Filée P, Duval V, Joris B, Pauw ED (2002). "Advantages and drawbacks of nanospray for studying noncovalent protein-DNA complexes by mass spectrometry". Rapid Commun. Mass Spectrom. 16 (18): 1723–8. Bibcode:2002RCMS...16.1723G. doi:10.1002/rcm.776. hdl:2268/322. PMID 12207359.
  70. ^ Daubenfeld T, Bouin AP, van der Rest G (September 2006). "A deconvolution method for the separation of specific versus nonspecific interactions in noncovalent protein-ligand complexes analyzed by ESI-FT-ICR mass spectrometry". J. Am. Soc. Mass Spectrom. 17 (9): 1239–48. doi:10.1016/j.jasms.2006.05.005. PMID 16793278.
  71. ^ Rosu F, De Pauw E, Gabelica V (July 2008). "Electrospray mass spectrometry to study drug-nucleic acids interactions". Biochimie. 90 (7): 1074–87. doi:10.1016/j.biochi.2008.01.005. PMID 18261993.
  72. ^ Wortmann A, Jecklin MC, Touboul D, Badertscher M, Zenobi R (May 2008). "Binding constant determination of high-affinity protein-ligand complexes by electrospray ionization mass spectrometry and ligand competition". J Mass Spectrom. 43 (5): 600–8. Bibcode:2008JMSp...43..600W. doi:10.1002/jms.1355. PMID 18074334.
  73. ^ a b Jecklin MC, Touboul D, Bovet C, Wortmann A, Zenobi R (March 2008). "Which electrospray-based ionization method best reflects protein-ligand interactions found in solution? a comparison of ESI, nanoESI, and ESSI for the determination of dissociation constants with mass spectrometry". J. Am. Soc. Mass Spectrom. 19 (3): 332–43. doi:10.1016/j.jasms.2007.11.007. hdl:20.500.11850/9214. PMID 18083584.
  74. ^ Touboul D, Maillard L, Gr?sslin A, Moumne R, Seitz M, Robinson J, Zenobi R (February 2009). "How to deal with weak interactions in noncovalent complexes analyzed by electrospray mass spectrometry: cyclopeptidic inhibitors of the nuclear receptor coactivator 1-STAT6". J. Am. Soc. Mass Spectrom. 20 (2): 303–11. doi:10.1016/j.jasms.2008.10.008. hdl:20.500.11850/15377. PMID 18996720.
  75. ^ Czuczy N, Katona M, Takats Z (February 2009). "Selective detection of specific protein-ligand complexes by electrosonic spray-precursor ion scan tandem mass spectrometry". J. Am. Soc. Mass Spectrom. 20 (2): 227–37. doi:10.1016/j.jasms.2008.09.010. PMID 18976932.
  76. ^ Ishii, Kentaro; Zhou, Min; Uchiyama, Susumu (2025-08-06). "Native mass spectrometry for understanding dynamic protein complex". Biochimica et Biophysica Acta (BBA) - General Subjects. Biophysical Exploration of Dynamical Ordering of Biomolecular Systems. 1862 (2): 275–286. doi:10.1016/j.bbagen.2017.09.019. ISSN 0304-4165.

Further reading

[edit]
  • Cole, Richard (1997). Electrospray ionization mass spectrometry: fundamentals, instrumentation, and applications. New York: Wiley. ISBN 978-0-471-14564-6.
  • Gross, Michael; Pramanik, Birendra N.; Ganguly, A. K. (2002). Applied electrospray mass spectrometry. New York, N.Y: Marcel Dekker. ISBN 978-0-8247-0618-0.
  • Snyder, A. Peter (1996). Biochemical and biotechnological applications of electrospray ionization mass spectrometry. Columbus, OH: American Chemical Society. ISBN 978-0-8412-3378-2.
  • Alexandrov, M. L.; L. N. Gall; N. V. Krasnov; V. I. Nikolaev; V. A. Pavlenko; V. A. Shkurov (July 1984). Экстракция ионов из растворов при атмосферном давлении – Метод масс-спектрометрического анализа биоорганических веществ [Extraction of ions from solutions at atmospheric pressure – A method for mass spectrometric analysis of bioorganic substances]. Doklady Akademii Nauk SSSR (in Russian). 277 (2): 379–383.
  • Alexandrov, M. L.; L. N. Gall; N. V. Krasnov; V. I. Nikolaev; V. A. Pavlenko; V. A. Shkurov (2008) [July 1984]. "Extraction of ions from solutions under atmospheric pressure as a method for mass spectrometric analysis of bioorganic compounds". Rapid Communications in Mass Spectrometry. 22 (3): 267–270. Bibcode:2008RCMS...22..267A. doi:10.1002/rcm.3113. PMID 18181250.
[edit]
牛油果是什么季节的水果 直肠ca是什么意思 刚怀孕肚子有什么变化 痰有腥臭味是什么原因 考试前不能吃什么
m 是什么单位 什么的草原 性激素六项挂什么科 什么是政策 意淫是什么
by是什么意思 仔是什么意思 人间炼狱是什么意思 midea是什么牌子 什么治失眠最有效
胃泌素是什么 mch是什么意思 纯阴八字为什么要保密 什么叫业障 大便有酸味是什么原因
儿童经常流鼻血什么原因造成的kuyehao.com 欣赏一个人是什么意思hcv8jop9ns7r.cn 苦瓜有什么营养hcv7jop5ns1r.cn 你在看什么hcv9jop4ns9r.cn 田共念什么hcv8jop5ns4r.cn
辩证思维是什么意思hcv8jop7ns1r.cn 喻字五行属什么hcv9jop6ns2r.cn 办理社保卡需要什么资料sanhestory.com 新生儿痤疮是什么引起的hcv9jop4ns8r.cn 吃什么药头脑立刻清醒hcv9jop7ns3r.cn
一级军士长什么待遇hcv9jop2ns1r.cn 脚趾头发麻什么原因shenchushe.com 私生是什么意思hcv9jop6ns6r.cn 查电话号码打什么电话hcv7jop7ns1r.cn 是什么结构hcv8jop1ns5r.cn
脚底疼是什么原因hcv9jop6ns0r.cn 小便有泡沫是什么原因hcv8jop4ns5r.cn 苹果什么时候吃最好hcv9jop1ns5r.cn 腹泻吃什么药见效最快hcv9jop2ns9r.cn 艺字五行属什么hcv8jop7ns2r.cn
百度